12,254 research outputs found

    Commuting self-adjoint extensions of symmetric operators defined from the partial derivatives

    Get PDF
    We consider the problem of finding commuting self-adjoint extensions of the partial derivatives {(1/i)(\partial/\partial x_j):j=1,...,d} with domain C_c^\infty(\Omega) where the self-adjointness is defined relative to L^2(\Omega), and \Omega is a given open subset of R^d. The measure on \Omega is Lebesgue measure on R^d restricted to \Omega. The problem originates with I.E. Segal and B. Fuglede, and is difficult in general. In this paper, we provide a representation-theoretic answer in the special case when \Omega=I\times\Omega_2 and I is an open interval. We then apply the results to the case when \Omega is a d-cube, I^d, and we describe possible subsets \Lambda of R^d such that {e^(i2\pi\lambda \dot x) restricted to I^d:\lambda\in\Lambda} is an orthonormal basis in L^2(I^d).Comment: LaTeX2e amsart class, 18 pages, 2 figures; PACS numbers 02.20.Km, 02.30.Nw, 02.30.Tb, 02.60.-x, 03.65.-w, 03.65.Bz, 03.65.Db, 61.12.Bt, 61.44.B

    Ages, metallicities and α\alpha-element enhancement for galaxies in Hickson compact groups

    Full text link
    Central velocity dispersions and eight line-strength Lick indices have been determined from 1.3A˚{\rm \AA} resolution long-slit spectra of 16 elliptical galaxies in Hickson compact groups. These data were used to determine galaxy properties (ages, metallicities and α\alpha-element enhancements) and allowed a comparison with the parameters determined for a sample of galaxies in lower density environments, studied by Gonz\'alez (1993). The stellar population parameters were derived by comparison to single stellar population models of Thomas et al. (2003) and to a new set of SSP models for the indices Mg2_2, Fe5270 and Fe5335 based on synthetic spetra. These models, based on an update version of the fitting functions presented in Barbuy et al. (2003), are fully described here. Our main results are: (1) the two samples have similar mean values for the metallicities and [α\alpha/Fe] ratios, (2) the majority of the galaxies in compact groups seem to be old (median age of 14 Gyr for eight galaxies for which ages could be derived), in agreement with recent work by Proctor et al. (2004). These findings support two possible scenarios: compact groups are either young systems whose members have recently assembled and had not enough time to experience any merging yet or, instead, they are old systems that have avoided merging since their time of formation.Comment: Accepted for publication in A

    The Universality of the Fundamental Plane of E and S0 Galaxies. Spectroscopic data

    Full text link
    We present here central velocity dispersion measurements for 325 early-type galaxies in eight clusters and groups of galaxies, including new observations for 212 galaxies. The clusters and groups are the A262, A1367, Coma (A1656), A2634, Cancer and Pegasus clusters, and the NGC 383 and NGC 507 groups. The new measurements were derived from medium dispersion spectra, that cover 600 A centered on the Mg Ib triplet at lambda ~ 5175. Velocity dispersions were measured using the Tonry & Davis cross-correlation method, with a typical accuracy of 6%. A detailed comparison with other data sources is made.Comment: 12 pages, 5 tables, 3 figures, to appear in AJ. Note that tables 2 and 3 are in separate files, as they should be printed in landscape forma

    Tuning of magnetic and electronic states by control of oxygen content in lanthanum strontium cobaltites

    Full text link
    We report on the magnetic, resistive, and structural studies of perovskite La1/3_{1/3}Sr2/3_{2/3}CoO3−ή_{3-\delta}. By using the relation of synthesis temperature and oxygen partial pressure to oxygen stoichiometry obtained from thermogravimetric analysis, we have synthesized a series of samples with precisely controlled ή=0.00−0.49\delta=0.00-0.49. These samples show three structural phases at ή=0.00−0.15\delta=0.00-0.15, ≈0.25\approx0.25, ≈0.5\approx0.5, and two-phase behavior for other oxygen contents. The stoichiometric material with ή=0.00\delta=0.00 is a cubic ferromagnetic metal with the Curie temperature TC=274T_{\rm C}=274 K. The increase of ή\delta to 0.15 is followed by a linear decrease of TCT_{\rm C} to ≈\approx 160 K and a metal-insulator transition near the boundary of the cubic structure range. Further increase of ή\delta results in formation of a tetragonal 2ap×2ap×4ap2a_p\times 2a_p \times 4a_p phase for ή≈0.25\delta\approx 0.25 and a brownmillerite phase for ή≈0.5\delta\approx0.5. At low temperatures, these are weak ferromagnetic insulators (canted antiferromagnets) with magnetic transitions at Tm≈230T_{\rm m}\approx230 and 120 K, respectively. At higher temperatures, the 2ap×2ap×4ap2a_p\times 2a_p \times 4a_p phase is GG-type antiferromagnetic between 230 K and ≈\approx360 K. Low temperature magnetic properties of this system for ή<1/3\delta<1/3 can be described in terms of a mixture of Co3+^{3+} ions in the low-spin state and Co4+^{4+} ions in the intermediate-spin state and a possible spin transition of Co3+^{3+} to the intermediate-spin state above TCT_{\rm C}. For ή>1/3\delta>1/3, there appears to be a combination of Co2+^{2+} and Co3+^{3+} ions, both in the high-spin state with dominating antiferromagnetic interactions.Comment: RevTeX, 9 pages, 7 figures, to be published in Physical Review

    First energetic neutral atom images from Polar

    Get PDF
    Energetic neutral atoms are created when energetic magnetospheric ions undergo charge exchange with cold neutral atoms in the Earth\u27s tenuous extended atmosphere (the geocorona). Since they are unaffected by the Earth\u27s magnetic field, these energetic neutrals travel away in straight line trajectories from the points of charge exchange. The remote detection of these particles provides a powerful means through which the global distribution and properties of the geocorona and ring current can be inferred. Due to its 2 × 9 RE polar orbit, the Polar spacecraft provides an excellent platform from which to observe ENAs because it spends much of its time in the polar caps which are usually free from the contaminating energetic charged particles that make observations of ENAs more difficult. In this brief report, we present the first ENA imaging results from Polar. Storm-time ENA images are presented for a northern polar cap apogee pass on August 29, 1996 and for a southern polar cap perigee pass on October 23, 1996. As well, we show with a third event (July 31, 1996) that ENA emissions can also be detected in association with individual substorm

    The Fundamental Plane in RX J0142.0+2131: a galaxy cluster merger at z=0.28

    Get PDF
    We present the Fundamental Plane (FP) in the z = 0.28 cluster of galaxies RX J0142.0+2131. There is no evidence for a difference in the slope of the FP when compared with the Coma cluster, although the internal scatter is larger. On average, stellar populations in RX J0142.0+2131 have rest-frame V-band mass-to-light ratios (M/L_V) 0.29+-0.03 dex lower than in Coma. This is significantly lower than expected for a passively-evolving cluster formed at z_f=2. Lenticular galaxies have lower average M/L_V and a distribution of M/L_V with larger scatter than ellipticals. Lower mass-to-light ratios are not due to recent star formation: our previous spectroscopic observations of RX J0142.0+2131 E/S0 galaxies showed no evidence for significant star-formation within the past ~4 Gyr. However, cluster members have enhanced alpha-element abundance ratios, which may act to decrease M/L_V. The increased scatter in the RX J0142.0+2131 FP reflects a large scatter in M/L_V implying that galaxies have undergone bursts of star formation over a range of epochs. The seven easternmost cluster galaxies, including the second brightest member, have M/L_V consistent with passive evolution and z_f = 2. We speculate that RX J0142.0+2131 is a cluster-cluster merger where the galaxies to the east are yet to fall into the main cluster body or have not experienced star formation as a result of the merger.Comment: 4 pages, 2 figures, accepted for publication in ApJ Letter

    The Possible z=0.83 Precursors of z=0 M* Early-type Cluster Galaxies

    Full text link
    We examine the distribution of stellar masses of galaxies in MS 1054-03 and RX J0152.7-1357, two X-ray selected clusters of galaxies at z=0.83. Our stellar mass estimates, from spectral energy distribution fitting, reproduce the dynamical masses as measured from velocity dispersions and half-light radii with a scatter of 0.2 dex in the mass for early-type galaxies. When we restrict our sample of members to high stellar masses, > 1e11.1 Msun (M* in the Schechter mass function for cluster galaxies), we find that the fraction of early-type galaxies is 79 +/- 6% at z=0.83 and 87 +/- 6% at z=0.023 for the Coma cluster, consistent with no evolution. Previous work with luminosity-selected samples finds that the early-type fraction in rich clusters declines from =~80% at z=0 to =~60% at z=0.8. The observed evolution in the early-type fraction from luminosity-selected samples must predominately occur among sub-M* galaxies. As M* for field and group galaxies, especially late-types, is below M* for clusters galaxies, infall could explain most of the recent early-type fraction growth. Future surveys could determine the morphological distributions of lower mass systems which will confirm or refute this explanation.Comment: 5 pages in emulate ApJ format with three color figures. Accepted for publication in ApJ Letters, v642n2. Updated to correct grammatical and typographic errors found by the journa

    Mass-Selection and the Evolution of the Morphology-Density Relation from z=0.8 to z=0

    Get PDF
    We examined the morphology-density relations for galaxy samples selected by luminosity and by mass in each of five massive X-ray clusters from z=0.023 to 0.83 for 674 spectroscopically-confirmed members. Rest-frame optical colors and visual morphologies were obtained primarily from Hubble Space Telescope images. Morphology-density relations (MDR) are derived in each cluster from a complete, luminosity-selected sample of 452 galaxies with a magnitude limit M_V < M^{*}_{V} + 1. The change in the early-type fraction with redshift matches previous work for massive clusters of galaxies. We performed a similar analysis, deriving MDRs for complete, mass-selected samples of 441 galaxies with a mass-limit of 10^{10.6} M_{\sun}. Our mass limit includes faint objects, the equivalent of =~1 mag below L^{*} for the red cluster galaxies, and encompasses =~70% of the stellar mass in cluster galaxies. The MDRs in the mass-selected sample at densities of Sigma > 50 galaxies Mpc^{-2} are similar to those in the luminosity-selected sample but show larger early-type fractions. However, the trend with redshift in the fraction of elliptical and S0 galaxies with masses > 10^{10.6} M_{\sun} differs significantly between the mass- and luminosity-selected samples. The clear trend seen in the early-type fraction from z=0 to z=~ 0.8 is not found in mass-selected samples. The early-type galaxy fraction changes much less, and is consistent with being constant at 92% +/- 4% at \Sigma> 500 galaxies Mpc^{-2} and 83 +/- 3% at 50 < \Sigma < 500 galaxies Mpc^{-2}. This suggests that galaxies of mass lower than > 10^{10.6} M_{\sun} play a significant role in the evolution of the early-type fraction in luminosity-selected samples. (Abstract abridged)Comment: 18 pages in emulate ApJ format, with 10 color figures, Accepted to ApJ. Version updated to reflect published version, includes new references and a correction to table

    The Fundamental Plane of Gravitational Lens Galaxies and The Evolution of Early-Type Galaxies in Low Density Environments

    Get PDF
    Most gravitational lenses are early-type galaxies in relatively low density environments -- a ``field'' rather than a ``cluster'' population. We show that field early-type galaxies with 0 < z < 1, as represented by the lens galaxies, lie on the same fundamental plane as those in rich clusters at similar redshifts. We then use the fundamental plane to measure the combined evolutionary and K-corrections for early-type galaxies in the V, I and H bands. Only for passively evolving stellar populations formed at z > 2 (H_0=65 km/s Mpc, Omega_0=0.3, Lambda_0=0.7) can the lens galaxies be matched to the local fundamental plane. The high formation epoch and the lack of significant differences between the field and cluster populations contradict many current models of the formation history of early-type galaxies. Lens galaxy colors and the fundamental plane provide good photometric redshift estimates with an empirical accuracy of -0.03 +/- 0.11 for the 17 lenses with known redshifts. A mass model dominated by dark matter is more consistent with the data than either an isotropic or radially anisotropic constant M/L mass model, and a radially anisotropic model is better than an isotropic model.Comment: 36 pages, 9 figures, 6 tables. ApJ in press. Final version contains more observational dat

    The Star Formation Epoch of the Most Massive Early-Type Galaxies

    Get PDF
    We present new Keck spectroscopy of early-type galaxies in three galaxy clusters at z~0.5. We focus on the fundamental plane (FP) relation, and combine the kinematics with structural parameters determined from HST images. The galaxies obey clear FP relations, which are offset from the FP of the nearby Coma cluster due to passive evolution of the stellar populations. The z~0.5 data are combined with published data for 11 additional clusters at 0.18<z<1.28, to determine the evolution of the mean M/L(B) ratio of cluster galaxies with masses M>10^11 M_sun, as implied by the FP. We find dlog(M/L(B))/dz = -0.555+-0.042, stronger evolution than was previously inferred from smaller samples. The observed evolution depends on the luminosity-weighted mean age of the stars in the galaxies, the initial mass function (IMF), selection effects due to progenitor bias, and other parameters. Assuming a normal IMF but allowing for various other sources of uncertainty we find z* = 2.01+-0.20 for the luminosity-weighted mean star formation epoch. The main uncertainty is the slope of the IMF in the range 1-2 Solar masses: we find z* = 4.0 for a top-heavy IMF with slope x=0. The M/L(B) ratios of the cluster galaxies are compared to those of recently published samples of field early-type galaxies at 0.32<z<1.14. Assuming that progenitor bias and the IMF do not depend on environment we find that the present-day age of stars in massive field galaxies is 4.1 +- 2.0 % (~0.4 Gyr) less than that of stars in massive cluster galaxies, consistent with most, but not all, previous studies of local and distant early-type galaxies. This relatively small age difference is surprising in the context of expectations from ``standard'' hierarchical galaxy formation models. [ABRIDGED]Comment: Accepted for publication in ApJ. Minor corrections to match published versio
    • 

    corecore